Abstract

摘要: 在强跟踪滤波(Strong track filter, STF)算法和延迟扩展Kalman滤波(Schmidt extended Kalman filter, SEKF)算法的基础上, 提出了强跟踪延迟滤波(Strong track Schmidt filter, STSF)算法, 结合感应电机降阶模型建立了电机状态估计算法, 将其应用于感应电机无速度传感器控制系统中, 并与扩展Kalman滤波(Extended Kalman filter, EKF)、SEKF和STF三种算法的状态估计性能作比较. 仿真和实验结果表明, STSF算法在估计精度、跟踪速度、抑止噪声等方面均优于EKF算法, 并且计算复杂度显著降低, 能有效在线估计电机转速和磁链. 关键词: 感应电机 / 无速度传感器控制 / 降阶模型 / Kalman滤波器 / 强跟踪滤波器

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.