Abstract
ABSTRACT We investigate new solutions for magnetized neutron stars with a barotropic core in magnetohydrodynamic (MHD) equilibrium and a magnetoelastic crust, which was neglected by previous studies concerning stars in MHD equilibrium. The Lorentz force of the barotropic star is purely irrotational and the structures of magnetic fields are constrained. By contrast, a solenoidal component of the Lorentz force exists in the elastic crust and the structures of the magnetic fields are less restricted. We find that the minor solenoidal component in the elastic crust is important for sustaining the strong magnetic field in the core. Unlike previous studies, the toroidal magnetic field exists in the entire region of the core, and we obtain equilibrium states with large toroidal magnetic fields, where the toroidal magnetic energy is larger than the poloidal magnetic energy. The elastic force of the crust sustains an order of 1015 G toroidal magnetic field in the core, and the maximum strength of the toroidal magnetic field is approximately proportional to the crust thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.