Abstract

Single-layer graphene exhibits exceptional mechanical properties attractive for optomechanics: it combines low mass density, large tensile modulus, and low bending stiffness. However, at visible wavelengths, graphene absorbs weakly and reflects even less, thereby is inadequate to generate large optical forces needed in optomechanics. Here, we numerically show that a single-layer graphene sheet is sufficient to produce strong optical forces under terahertz or infrared illumination. For a system as simple as graphene suspended atop a uniform substrate, high reflectivity from the substrate is crucial in creating a standing-wave pattern, leading to a strong optical force on graphene. This force is readily tunable in amplitude and direction by adjusting the suspension height. In particular, repellent optical forces can levitate graphene to a series of stable equilibrium heights above the substrate. One of the key parameters to maximize the optical force is the excitation frequency: peak forces are found near the scattering frequency of free carriers in graphene. With a dynamically controllable Fermi level, graphene opens up new possibilities of tunable nanoscale optomechanical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.