Abstract

T cell tolerance induction was examined in long-term H-2-heterozygous parent----F1 chimeras prepared with supralethal irradiation (1,300 rad). Although these chimeras appeared to be devoid of host-type APC, the donor T cells developing in the chimeras showed marked tolerance to host-type H-2 determinants. Tolerance to the host appeared to be virtually complete in four assay systems: (a) primary mixed lymphocyte reactions (MLR) of purified lymph node (LN) CD8+ cells (+/- IL-2); (b) primary MLR of CD4+ (CD8-) thymocytes; (c) skin graft rejection; and (d) induction of lethal graft-vs.-host disease by CD4+ cells. Similar tolerance was observed in chimeras given double irradiation. The only assay in which the chimera T cells failed to show near-total tolerance to the host was the primary MLR of post-thymic CD4+ cells. In this assay, LN CD4+ cells regularly gave a significant antihost MLR. The magnitude of this response was two- to fourfold less than the response of normal parental strain CD4+ cells and, in I-E(-)----I-E+ chimeras, was paralleled by approximately 70% deletion of V beta 11+ cells. Since marked tolerance was evident at the level of mature thymocytes, tolerance induction in the chimeras presumably occurred in the thymus itself. The failure to detect host APC in the thymus implies that tolerance reflected contact with thymic epithelial cells (and/or other non-BM-derived cells in the thymus). To account for the residual host reactivity of LN CD4+ cells and the incomplete deletion of V beta 11+ cells, it is suggested that T cell contact with thymic epithelial cells induced clonal deletion of most of the host-reactive T cells but spared a proportion of these cells (possibly low affinity cells). Since these latter cells appeared to be functionally inert in the thymus (in contrast to LN), we suggest that the thymic epithelial cells induced a temporary form of anergy in the remaining host-reactive thymocytes. This anergic state disappeared when the T cells left the thymus and reached LN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.