Abstract

Candida albicans is the most commonly isolated Candida spp. in the clinic and its resistance to fluconazole (FLC) has been emerging rapidly. Combination therapy may be a potentially effective approach to combat drug resistance. In this study, the combination antifungal effects of dexamethasone (DXM) and FLC against resistant C. albicans in vitro were assayed using minimum inhibitory concentrations (MICs), sessile MICs and time–kill curves. The in vivo efficacy of this drug combination was evaluated using a Galleria mellonella model by determining survival rate, fungal burden and histological damage. In addition, the impact of DXM on efflux pump activity was investigated using a rhodamine 6G assay. Expression of CDR1, CDR2 and MDR1 was determined by real-time quantitative PCR, and extracellular phospholipase activity was detected by the egg yolk agar method to reveal the potential synergistic mechanism. The results showed that DXM potentiates the antifungal effect of FLC against resistant C. albicans strains both in vitro and in vivo, and the synergistic mechanism is related to inhibiting the efflux of drugs and reducing the virulence of C. albicans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call