Abstract

Strong non-Oberbeck–Boussinesq (OB) effects in turbulent convection were investigated experimentally in SF6 in the vicinity of its gas-liquid critical point (CP). The temperature and density dependencies of the thermodynamic and kinetic properties of SF6 near its CP and at the average critical density lead to strong but symmetric vertical variations of the main physical properties, which enter into the control parameters of turbulent convection. This produces an up-down symmetry in the temperature drops across the upper and lower half of the cell, while the temperature in the middle of the cell remains equal to the average value. Thus, in spite of the strong variations of the fluid properties across the cell height, the up-down symmetry remains like in the OB case. The distinctive feature of the symmetric non-OB turbulent convection is that the heat transport scales with the Rayleigh number Ra like in the OB turbulent convection. At the same time, it shows a much stronger dependence on the Prandtl number Pr. We singled out the influence of the non-OB effect on the heat transport and found that, for the same Pr, an eightfold larger non-OB effect does not alter either the value of the Nusselt number, Nu, nor its scaling with respect to the Rayleigh number, Nu∝Raγ. The conclusion is that the strong symmetric non-OB effect by itself is not responsible for the strong Pr dependence of the heat transport near CP. The possible source of this Pr dependence is the strongly enhanced isothermal compressibility in the vicinity of CP, which can affect the dynamics of plumes and so the heat transport close to the CP, and manifests itself in a dependence of Nu on Pr much steeper than in the OB case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call