Abstract

The mechanism of chemical reactions between adsorbed species is defined by the combined effects of the adsorbate-substrate potential landscape and lateral interactions. Such lateral interactions are therefore integral to catalytic processes, but their study is often complicated by "substrate mediation", the regulation of a two-body potential between adsorbed particles by the surface itself. Substrate mediation can influence the sign and magnitude of lateral interactions. There are notable exceptions of ordered structures forming at low coverage, indicative of short-range attractive forces where repulsive forces are expected to dominate, suggesting a strong substrate-mediated contribution. To explore further the origins of such interactions, we have investigated the adsorption of CO on Cu(110) using a combination of low-temperature microscopy and first-principles calculations. Our studies reveal that lateral adsorbate interactions, which are constrained by the metal surface, regulate the bonding between the adsorbate and substrate. Anisotropic CO-CO coupling is seen to arise from a perfect balance between the intermolecular accumulation of charge that acts as a glue (chemical coupling) at sufficiently large distances to avoid repulsive effects (dipole-dipole coupling and Pauli's repulsion between electron clouds).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.