Abstract

Recently, there has been a surge of interest in using R\'enyi entropies as quantifiers of correlations in many-body quantum systems. However, it is well known that in general these entropies do not satisfy the strong subadditivity inequality, which is a central property ensuring the positivity of correlation measures. In fact, in many cases they do not even satisfy the weaker condition of subadditivity. In the present paper we shed light on this subject by providing a detailed survey of R\'enyi entropies for bosonic and fermionic Gaussian states. We show that for bosons the R\'enyi entropies always satisfy subadditivity, but not necessarily strong subadditivity. Conversely, for fermions both do not hold in general. We provide the precise intervals of the R\'enyi index $\alpha$ for which subadditivity and strong subadditivity are valid in each case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call