Abstract
In this paper, Gd-promoted Co3O4 catalysts were prepared via a facile coprecipitation method for low-temperature catalytic N2O decomposition. Due to the addition of Gd, the crystallite size of Co3O4 in the Gd0.06Co catalyst surprisingly decreased to 4.9 nm, which is much smaller than most additive-modified Co3O4 catalysts. This huge change in the catalyst's textural structure endows the Gd0.06Co catalyst with a large specific surface area, plentiful active sites, and a weak Co-O bond. Hence, Gd0.06Co exhibited superior activity for catalyzing 2000 ppmv N2O decomposition, and the temperature for the complete catalytic elimination of N2O was as low as 350 °C. Meanwhile, compared with pure Co3O4, Ea decreased from 77.4 to 46.8 kJ·mol-1 and TOF of the reaction increased from 1.16 × 10-3 s-1 to 5.13 × 10-3 s-1 at 300 °C. Moreover, Gd0.06Co displayed a quite stable catalytic performance in the presence of 100 ppmv NO, 5 vol % O2, and 2 vol % H2O.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.