Abstract
Among the brain structures involved in processing affective stimuli, the roles of the prefrontal cortex (PFC) and the mesocorticolimbic dopaminergic (DA) innervation are well established. In contrast to our understanding of the reward stimuli, less is known about how strong somatic stimulation is processed within the PFC. Here, we examined the effects of a strong pinch delivered to the rat posterior paw on spontaneous and current-evoked activity of PFC neurons using intracellular recordings in anesthetized rats. Following the paw pinch, pyramidal cells exhibited a significant decrease in spontaneous activity along with a significant increase in the current-evoked firing. The increase in current-evoked firing elicited by the paw pinch was inversely correlated with the baseline firing rate. Systemic administration of a selective dopamine D2 receptor antagonist partially blocked the effects elicited by the paw pinch on cortical excitability, whereas systemic administration of a D1 antagonist seems to facilitate paw-mediated increases in evoked firing. These results suggest that strong somatic stimuli decrease spontaneous firing while increasing depolarization-evoked firing in a DA receptor dependent manner. These mechanisms may help in the control of the signal to noise ratio or the salience of information processing in the PFC following strong somatic stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.