Abstract

We consider the short time strong solutions to the compressible magnetohydrodynamic equations with initial vacuum, in which the velocity field satisfies the Navier‐slip condition. The Navier‐slip condition differs in many aspects from no‐slip conditions, and it has attracted considerable attention in nanoscale and microscale flows research. Inspired by Kato and Lax's idea, we use the Lax–Milgram theorem and contraction mapping argument to prove local existence. Moreover, under the Navier‐slip condition, we establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of L∞ norm of the deformation tensor D(u). Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call