Abstract
We prove the existence and uniqueness of strong solutions for stochastic differential equations in which the drift coefficient is square integrable in time variable and Hölder continuous in space variable. Moreover, we prove that the unique strong solution has a continuous modification, which is β-Hölder continuous in space variable for every β∈(0,1), and as an L2(Ω×(0,T)) valued function, it is differentiable as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.