Abstract
This paper is concerned with the strong solution to the Cauchy–Dirichlet problem for backward stochastic partial differential equations of parabolic type. Existence and uniqueness theorems are obtained, due to an application of the continuation method under fairly weak conditions on variable coefficients and C 2 domains. The problem is also considered in weighted Sobolev spaces which allow the derivatives of the solutions to blow up near the boundary. As applications, a comparison theorem is obtained and the semi-linear equation is discussed in the C 2 domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.