Abstract

This paper proposes three strong second order cone programming (SOCP) relaxations for the AC optimal power flow (OPF) problem. These three relaxations are incomparable to each other and two of them are incomparable to the standard SDP relaxation of OPF. Extensive computational experiments show that these relaxations have numerous advantages over existing convex relaxations in the literature: (i) their solution quality is extremely close to that of the standard SDP relaxation (the best one is within 99.96% of the SDP relaxation on average for all the IEEE test cases) and consistently outperforms previously proposed convex quadratic relaxations of the OPF problem, (ii) the solutions from the strong SOCP relaxations can be directly used as a warm start in a local solver such as IPOPT to obtain a high quality feasible OPF solution, and (iii) in terms of computation times, the strong SOCP relaxations can be solved an order of magnitude faster than the standard SDP relaxation. For example, one of the proposed SOCP relaxations together with IPOPT produces a feasible solution for the largest instance in the IEEE test cases (the 3375-bus system) and also certifies that this solution is within 0.13% of global optimality, all this computed within 157.20 seconds on a modest personal computer. Overall, the proposed strong SOCP relaxations provide a practical approach to obtain feasible OPF solutions with extremely good quality within a time framework that is compatible with the real-time operation in the current industry practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.