Abstract

Geophysical and geochemical evidence suggests that Earth's core is predominantly made of iron (or iron-nickel alloy) with several percent of light elements. However, Earth's solid inner core transmits shear waves at a much lower velocity than expected from mineralogical models that are consistent with geochemical constraints. Here we investigate the effect of hydrogen on the elastic properties of iron and iron-silicon alloys using ab initio molecular dynamic simulations. We find that these H-bearing alloys maintain a superionic state under inner-core conditions and that their shear moduli exhibit a strong shear softening due to the superionic effect, with a corresponding reduction in VS. Several hcp-iron-silicon-hydrogen compositions can explain the observed density, VP, VS, and Poisson's ratio of the inner core simultaneously. Our results indicate that hydrogen is a significant component of the Earth's core, and that it may contain at least four ocean masses of water. This indicates that the Earth may have accreted wet and obtained its water from chondritic and/or nebular materials before or during core formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.