Abstract
An exchange ring R is strongly separative provided that for all finitely generated projective right R-modules A and B, A ⊕ A ≅ A ⊕ B ⇒ A ≅ B. We prove that an exchange ring R is strongly separative if and only if for any corner S of R, aS + bS = S implies that there exist u, v ∈ S such that au = bv and Su + Sv = S if and only if for any corner S of R, aS + bS = S implies that there exists a right invertible matrix \( \left( {\begin{array}{*{20}c} a & b * & * \end{array} } \right) \) ∈ M2(S). The dual assertions are also proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.