Abstract

Soft lattice and strong exciton-phonon coupling have been demonstrated in layered double perovskites (LDPs) recently; therefore, LDPs represents a promising class of compounds as excellent self-trapped exciton (STE) emitters for applications in solid-state lighting. However, few LDPs with outstanding STE emissions have been discovered, and their optoelectronic properties are still unclear. Based on the three-dimensional (3D) Cs2 NaInCl6 , we synthesized two 2D derivatives (PEA)4 NaInCl8 :Sb (PEA=phenethylamine) and (PEA)2 CsNaInCl7 :Sb with monolayer and bilayer inorganic sheets by a combination of dimensional reduction and Sb-doping. Bright broadband emissions were obtained for the first time under ambient temperature and pressure, with photoluminescence quantum efficiency (PLQE) of 48.7 % (monolayer) and 29.3 % (bilayer), superior to current known LDPs. Spectroscopic characterizations and first-principles calculations of excited state indicate the broadband emissions originate from STEs trapped at the introduced [SbCl6 ]3- octahedron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call