Abstract

We map the large-scale sub-structure in the Galactic stellar halo using accurate 3D positions of ~14,000 RR Lyrae reported by the Catalina Sky Survey. In the heliocentric distance range of 10-25 kpc, in the region of the sky approximately bounded by 30{\deg} < l < 55{\deg} and -45{\deg} < b < -25{\deg}, there appears to be a strong excess of RRab stars. This overdensity, peaking at 18 kpc, is most likely associated with the so-called Hercules-Aquila Cloud, previously detected using Main Sequence tracers at similar distances in the Sloan Digital Sky Survey data. Our analysis of the period-amplitude distribution of RR Lyrae in this region indicates that the HAC is dominated by the Oosterhoff I type population. By comparing the measured RR Lyrae number density to models of a smooth stellar halo, we estimate the significance of the observed excess and provide an updated estimate of the total luminosity of the Cloud's progenitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call