Abstract

The surface structure of Cr 2O 3(0001) was investigated by quantitative low-energy electron diffraction and molecular dynamic simulations. In qualitative agreement with each other, both methods indicate strong vertical relaxations at and near the surface. These relaxations are concomitant with a charge reduction and depolarization, which stabilize the surface, yielding energies close to those found for non-polar oxide surfaces with non-divergent surface potentials. The lateral arrangement of oxygen atoms is identical to that in the bulk, i.e. there are no lateral distortions to accomodate the strong interlayer relaxations. The latter extend extend deep into the surface, with the experimentally determined changes of the first four interlayer distances being −38%, −21%, −25% and +11% with respect to the unrelaxed bulk values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.