Abstract

We employ first-principles calculations combined with self-consistent phonon theory and Boltzmann transport equations to investigate the thermal transport and thermoelectric properties of full-Heusler compound Na2TlSb. Our findings exhibit that the strong quartic anharmonicity and temperature dependence of the Tl atom with rattling behavior plays an important role in the lattice stability of Na2TlSb. We find that soft Tl-Sb bonding and resonant bonding in the pseudocage composed of the Na and Sb atoms interaction is responsible for ultralow κL. Meanwhile, the multi-valley band structure increases the band degeneracy, results in a high power factor in p-type Na2TlSb. The coexistence of ultralow κL and high power factor presents that Na2TlSb is a potential candidate for thermoelectric applications. Moreover, these findings help to understand the origin of ultralow κL of full-Heusler compounds with strong quartic anharmonicity, leading to the rational design of full-Heusler compounds with high thermoelectric performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call