Abstract

A set of multipartite orthogonal product states is strongly nonlocal if it is locally irreducible in every bipartition, which shows the phenomenon of strong quantum nonlocality without entanglement. It is known that unextendible product bases (UPBs) can show the phenomenon of quantum nonlocality without entanglement. Thus it is interesting to investigate the strong quantum nonlocality for UPBs. Most of the UPBs with the minimum size cannot demonstrate strong quantum nonlocality. In this paper, we construct a series of UPBs with different large sizes in d A ⊗ d B ⊗ d C and d A ⊗ d B ⊗ d C ⊗ d D for d A , d B , d C , d D ⩾ 3, and we also show that these UPBs have strong quantum nonlocality, which answers an open question given by Halder et al (2019 Phys. Rev. Lett. 122 040403) and Yuan et al (2020 Phys. Rev. A 102 042228) for any possible three and four-partite systems. Furthermore, we propose an entanglement-assisted protocol to locally discriminate the UPB in 3 ⊗ 3 ⊗ 4, and it consumes less entanglement resource than the teleportation-based protocol. Our results build the connection between strong quantum nonlocality and UPBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.