Abstract

A cavity-magnonic system composed of a superconducting microwave resonator coupled to a magnon mode hosted by the organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]x) is demonstrated. This work is motivated by the challenge of scalably integrating a low-damping magnetic system with planar superconducting circuits. V[TCNE]x has ultra-low intrinsic damping, can be grown at low processing temperatures on arbitrary substrates, and can be patterned via electron beam lithography. The devices operate in the strong coupling regime, with a cooperativity exceeding 1000 for coupling between the Kittel mode and the resonator mode at T≈0.4 K, suitable for scalable quantum circuit integration. Higher-order magnon modes are also observed with much narrower linewidths than the Kittel mode. This work paves the way for high-cooperativity hybrid quantum devices in which magnonic circuits can be designed and fabricated as easily as electricalwires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.