Abstract

Localization of quantum dots (QDs) in the vicinity of metal nanoparticles (NPs) is known as one of the most efficient ways to increase their photoluminescence (PL). Despite the important recent advances achieved in II-VI QDs, only a seven-fold plasmon-induced PL enhancement is reported for Si QDs. In our paper we show that the plasmon-induced strong local PL enhancement of Si QDs in an SiN matrix can reach a 60-fold gain level. This important result was achieved on original tunable "nano-Ag/SiN(X)" plasmonic structures. In particular, we show that (i) localization of Si QDs in hot spot regions created by several randomly arranged Ag NPs and (ii) careful tuning of the multi-polar plasmon bands of Ag NPs to match resonant absorption and emission wavelengths of Si QDs, lead to the important enhancement of their PL intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.