Abstract

(Ba0.85Ca0.15)1−xPrx(Zr0.1Ti0.9)O3 (where 0 < x < 0.01, abbreviated as BCZT:xPr) ceramics were fabricated by conventional solid-state reaction method. The influence of dopant concentration and microstructure on photoluminescence, ferroelectric, and piezoelectric properties was systematically investigated. The results showed that the photoluminescence spectra of the samples exhibited strong green (530 nm) and red (602 nm) emissions upon excitation of the 430 nm to 500 nm light, which couples well with to the emission band of the commercial blue light-emitting diodes chips. The emission intensities were strongly dependent on the dopant concentration and crystallite size, which reached the optimal value when the crystallite size and dopant concentration were 8 μm and 0.002 mol, respectively. Meanwhile, a large piezoelectric response with d33 = 325 pC/N was obtained for BCZT:0.002Pr near the morphotropic phase boundary. Therefore, the Pr-doped BCZT materials, simultaneously exhibiting excellent luminescent properties and high piezoelectric properties, may have significant technological promise in novel multifunctional devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call