Abstract

Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (La0.7Sr0.3MnO3)1−x : (LaFeO3)x (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition. Under a moderate magnetic field cooling, an EB field as high as ∼800 Oe is achieved in the VAN film with x = 0.33, suggesting a great potential for its applications in high density memory devices. Such enhanced EB effects in perpendicular direction can be attributed to the high quality epitaxial co-growth of vertically aligned ferromagnetic LSMO and antiferromagnetic LFO phases, and the vertical interface coupling associated with a disordered spin-glass state. The VAN design paves a powerful way for integrating perpendicular EB effect within thin films and provides a new dimension for advanced spintronic devices.

Highlights

  • Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (La0.7Sr0.3MnO3)1−x : (LaFeO3)x (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition

  • Such enhanced EB effects in perpendicular direction can be attributed to the high quality epitaxial co-growth of vertically aligned ferromagnetic LSMO and antiferromagnetic LFO phases, and the vertical interface coupling associated with a disordered spin-glass state

  • We investigated the co-growth of FM LSMO (a = 3.87 Å, pseudo-cubic) and AFM LaFeO3 (LFO, a = 3.940 Å, pseudo-cubic) on SrTiO3 (STO, a = 3.905 Å) substrate to explore EB effect in the perpendicular direction

Read more

Summary

Introduction

Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (La0.7Sr0.3MnO3)1−x : (LaFeO3)x (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.