Abstract
Thin (approximately 10 nm) oxide buffer layers grown over lead-halide perovskite device stacks are critical for protecting the perovskite against mechanical and environmental damage. However, the limited perovskite stability restricts the processing methods and temperatures (<=110 C) that can be used to deposit the oxide overlayers, with the latter limiting the electronic properties of the oxides achievable. In this work, we demonstrate an alternative to existing methods that can grow pinhole-free TiOx (x = 2.00+/-0.05) films with the requisite thickness in <1 min without vacuum. This technique is atmospheric pressure chemical vapor deposition (AP-CVD). The rapid but soft deposition enables growth temperatures of >=180 {\deg}C to be used to coat the perovskite. This is >=70 {\deg}C higher than achievable by current methods and results in more conductive TiOx films, boosting solar cell efficiencies by >2%. Likewise, when AP-CVD SnOx (x ~ 2) is grown on perovskites, there is also minimal damage to the perovskite beneath. The SnOx layer is pinhole-free and conformal, which reduces shunting in devices, and increases steady-state efficiencies from 16.5% (no SnOx) to 19.4% (60 nm SnOx), with fill factors reaching 84%. This work shows AP-CVD to be a versatile technique for growing oxides on thermally-sensitive materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.