Abstract

In order to study an interplay between electronic inhomogeneity and superconductivity as seen in high-Tc cuprates, we numerically examine attractive Hubbard model in the absence of the translation symmetry. We systematically calculate the particle density profile for both 1-D and 2-D attractive Hubbard models with harmonic potential wells using the exact diagonalization and the density-matrix renormalization group methods. The numerical results reveal that fine inhomogeneous zig-zag patterns universally emerge in the 1-D model case and the zig-zag structure becomes checkerboard type in the 2-D one. Moreover, it is numerically and theoretically found that such inhomogeneities are caused by double occupation component, i.e., pairs tightly bound on a site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.