Abstract

The detection of monoamine neurotransmitters has become a vital research subject due to their high correlations with nervous system diseases, but insufficient detection precisions have obstructed diagnosis of some related diseases. Here, we focus on four monoamine neurotransmitters, dopamine, norepinephrine, epinephrine, and serotonin, to conduct their rapid and ultrasensitive detection. We find that the low-frequency (<200 cm-1) Raman vibrations of these molecules show some sharp peaks, and their intensities are significantly stronger than those of the high-frequency side. Theoretical calculations identify these peaks to be from strong out-of-plane vibrations of the C-C single bonds at the joint point of the ring-like molecule and its side chain. Using our surface enhanced low-frequency Raman scattering substrates, we show that the detection limit of dopamine as an example can reach 10 nM in artificial cerebrospinal fluid. This work provides a useful way for ultrasensitive and rapid detection of some neurotransmitters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.