Abstract

With observational data from three Acoustic Doppler Current Profiler (ADCP) moorings, we detected strong near-inertial oscillations (NIO) in the continental shelf region of the northern South China Sea in July 2008. The amplitude of the near-inertial current velocity is much greater than that of diurnal and semi-diurnal tides. The power of the NIOs is strongest in the intermediate layer, relatively weak in the surface layer, and insignificant in the near-bottom layer. The spectral analysis indicates that the NIOs have a peak frequency of 0.0307 cph, which is 2% lower than the local inertial frequency, i.e., a red-shift. The near-inertial wave has an upward vertical phase velocity, which involves a downward group velocity and energy flux. The estimated vertical phase velocity is about 43 m day−1, corresponding to a vertical wave length of about 58 m. The horizontal scale of the NIOs is at least hundreds of kilometers. This NIO event lasted for about 15 days after a typhoon’s passage. Given the northeastward background flow with significant horizontal shear, both Doppler shift and shear flow modulation mechanisms may be responsible for the red-shift of the observed NIOs. For the shear flow mechanism, the observed negative background vorticity and the corresponding effective Coriolis frequency reduce the lower limit of admissible frequency band for the NIOs, causing the red-shift. Meanwhile, the mooring area with the broadened frequency band acts as a wave-guide. The trapping and amplification effects lead to the relatively long sustaining period of the observed NIOs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call