Abstract

In this paper, we call strongly modular those reducible semi-simple odd mod $l$ Galois representations for which the conclusion of the strongest form of Serre's original modularity conjecture holds. Under the assumption that the Serre weight $k$ satisfies $l>k+1$, we give a precise characterization of strongly modular representations, hence generalizing a classical theorem of Ribet pertaining to the case of conductor $1$. When the representation $\rho$ is not strongly modular, we give a necessary and sufficient condition on the primes $p$ not dividing $Nl$ for which it arises in level $Np$, where $N$ denotes the conductor of $\rho$. This generalizes a result of Mazur on the case $(N,k)=(1,2)$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.