Abstract

The magneto-optical effect breaks time-reversal symmetry, a unique property that makes it indispensable in nonreciprocal optics and topological photonics. Unfortunately, all natural materials have a rather weak magneto-optical response in the optical frequency range, posing a significant challenge to the practical application of many emerging device concepts. Here we theoretically propose a composite material system that exhibits an intrinsic magneto-optical response orders of magnitude stronger than most magneto-optical materials used today. This is achieved by tailoring the resonant interplay between the quantum electrodynamics of electronic transitions in two-level systems and the classical electromagnetic response of local plasmon resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call