Abstract

This work reports an experimental study on the temperature dependence of the structural parameters of LiCrO${}_{2}$ (LCO) and Li${}_{0.99}$Cu${}_{0.01}$CrO${}_{2}$ (LCCO) by using a synchrotron x-ray diffraction technique. A significant magnetoelastic coupling is revealed by the anomalies observed in lattice parameters at the magnetic and electric phase transitions, apparent as steplike features in both Cr-O and Li-O bond lengths, as well as in O-Cr-O bond angles. Magnetic, dielectric, and electric polarization measurements reveal the antiferromagnetic and antiferroelectric (AFE) ordering at 119 and 61 K, respectively, for LCCO. Interestingly, a fairly large uncompensated spontaneous electric polarization appears for LCCO in contrast to nearly compensated polarization value for LCO below the AFE ordering. This is correlated to the structurally driven enhancement ($\ensuremath{\sim}$4 times) of the interlayer Cr-O-Li/Cu-O-Cr superexchange interaction for LCCO. We argue that strong magnetoelastic coupling holds the key for the observed uncompensated spontaneous electric polarization in LCCO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.