Abstract
For developing a climbing robot which is used to inspect and maintain a wind power tower, the magnetic unit is one of the key components. Based on analysis of the working conditions of the robot, the approach in this paper is to use four common kinds of magnetic units for adapting to the conical surface. The magnetic circuit of these units is given by theory analysis and is simulated using ANSYS. Moreover, the magnetic force is analysed in detail and the results prove that the magnetic force is greatly influenced by the gap between the unit and the wall surface. In this paper, the design procedures and selection criteria based on the analytical results are given. Meanwhile, these units are compared with each other with the aid of ANSYS. From the results of this comparison, it can be ascertained that the unit using Installation C has the better performance. Furthermore, the effectiveness of the magnetic unit using Installation C is verified by a prototype. The simulations and experiments show that the magnetic unit can allow the robot to keep in contact with the conical wall surface as well as the plane wall surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.