Abstract

Using compactly supported wavelets, Giné and Nickl [Uniform limit theorems for wavelet density estimators, Ann. Probab. 37(4) (2009) 1605–1646] obtain the optimal strong [Formula: see text] convergence rates of wavelet estimators for a fixed noise-free density function. They also study the same problem by spline wavelets [Adaptive estimation of a distribution function and its density in sup-norm loss by wavelet and spline projections, Bernoulli 16(4) (2010) 1137–1163]. This paper considers the strong [Formula: see text] convergence of wavelet deconvolution density estimators. We first show the strong [Formula: see text] consistency of our wavelet estimator, when the Fourier transform of the noise density has no zeros. Then strong [Formula: see text] convergence rates are provided, when the noises are severely and moderately ill-posed. In particular, for moderately ill-posed noises and [Formula: see text], our convergence rate is close to Giné and Nickl’s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.