Abstract

We study the spontaneous emission dynamics of a quantum emitter near a graphene nanodisk. We analyze the population dynamics of the excited state of the quantum emitter and also explore its dynamics as a non-Markovian open system. Specifically, we quantify the non-Markovian spontaneous emission dynamics using different non-Markovianity measures and calculate the quantum speed limit under non-Markovian evolution. We find strong light-matter coupling conditions for the quantum emitter near the graphene nanodisk, which are manifested in either distinct decaying Rabi oscillations or population trapping effects in the excited state population dynamics of the quantum emitter, depending on the parameters of the system. We also show that the values of the non-Markovianity measures and of the potential quantum speed up are large under strong light–matter coupling conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call