Abstract

Transition metal dichalcogenides (TMDs) have emerged as an attractive class of two-dimensional (2D) semiconductors that show unprecedented strength in its interaction with light. Here we will discuss our recent work on embedding such a 2D TMD layer of molybdenum disulphide in a dielectric microcavity showing the forming of strongly coupled half-light half-matter quasiparticles called microcavity polaritons. Realizing strong coupling at room temperature in a disorder free landscape such as 2D materials offers a practical and attractive route to realizing devices such as switches and logic gates that exploit the benefits of the half-light half-matter composition of the polaritons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call