Abstract

We have demonstrated transient charge localization effects with a driving high-frequency field of 7 fs, 1.5-cycle near-infrared light in correlated organic conductors. In a layered organic conductor α-(BEDT-TTF)2I3 (BEDT-TTF: bis[ethylenedithio]-tetrathiafulvalene), a transient short-range charge order (CO) state is induced in a metallic phase. In contrast to such drastic change in the electronic state from the metal to the transient CO in α-(BEDT-TTF)2I3, dynamics of a field-induced reduction of a transfer integral are captured as a red-shift of the plasma-like reflectivity edge in a quasi-one-dimensional organic conductor (TMTTF)2AsF6 (TMTTF: tetramethyltetrathiafulvalene). These studies on the field-induced charge localization have been motivated by the theory of dynamical localization on the basis of tight-binding models with no electron correlation under a strong continuous field. However, the results of pump–probe transient reflectivity measurements using nearly single-cycle 7 fs, 11 MV cm−1 pulses and the theoretical studies which are presented in this review indicate that the pulsed field contributes to the similar phenomenon with the help of a characteristic lattice structure and Coulomb repulsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.