Abstract

Heterogeneous solid base catalysis is valuable and promising in chemical industry, however it is insufficiently developed compared to solid acid catalysis due to the lack of satisfied solid base catalysts. To gain the strong basicity, the previous strategy was to basify oxides with alkaline metals to create surficial vacancies or defects, which suffers from the instability under catalytic conditions. Monocomponent basic oxides like MgO are literally stable but deficient in electron-withdrawing ability. Here we prove that a special connectivity of atoms could enhance the Lewis basicity of oxygen in monocomponent solids exemplified by Ga4B2O9. The structure-induced basicity is from the μ3-O linked exclusively to five-coordinated Ga3+. Ga4B2O9 behaved as a durable catalyst with a high yield of 81% in the base-catalyzed synthesis of α-aminonitriles by Strecker reaction. In addition, several monocomponent solid bases were evaluated in the Strecker reaction, and Ga4B2O9 has the largest amount of strong base centers (23.1 μmol/g) and the highest catalytic efficiency. Ga4B2O9 is also applicable in high-temperature solid-gas catalysis, for example, Ga4B2O9 catalyzed efficiently the dehydrogenation of n-propanol, resulting in a high selectivity to propanal (79%). In contrast, the comparison gallium borate, Ga-PKU-1, which is a Brönsted acid, preferred to catalyze the dehydration process to obtain propylene with a selectivity of 94%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.