Abstract

Current advances in observational cosmology suggest that our Universe is flat and dominated by dark energy. Out of many particular models of dark energy present in the literature we focus on four: quintessence, quintessence with time varying equation of state, braneworld model and generalized Chaplygin gas model. In this paper we discuss the utility of strong lensing systems for providing additional constraints on dark energy models. In particular, we use an Einstein cross gravitational lensing system HST 14176+5226 to confront its measured characteristics with background cosmologies invoked in the context of dark energy. The image separations in the system depend on angular distances to the lens and to the source, which in turn are determined by background cosmology. This opens a possibility to constrain cosmological model provided that we have good knowledge of the lens model. We demonstrate that recent measurements of velocity dispersion in the lensing galaxy made by Subaru telescope seem to be consistent with independently obtained bounds on parameters of cosmological models considered. The method we describe is based on angular diameter distances and could become a valuable tool of cosmological model inference complementary to Hubble diagram technique based on luminosity distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.