Abstract

We study the motion of massless test particles in a five-dimensional (5D) Myers–Perry black hole spacetime with two-spin parameters. The behavior of the effective potential in view of different values of black hole parameters is discussed in the equatorial plane. The frequency shift of photons is calculated which is found to depend on the spin parameter of black hole and the observed redshift is discussed accordingly. The deflection angle and the strong deflection limit coefficients are also calculated and their behavior with the spin parameters is analyzed in detail. It is observed that the behaviors of both deflection angle and strong field coefficient differs from Kerr black hole spacetime in four dimensions in General Relativity (GR), which is mainly due to the presence of two-spin parameters in higher dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.