Abstract
Nonstandard probability theories have been developed for modeling random systems in complex spaces, such as, quantum systems. One of these theories, the MV-algebraic probability theory, involves the notions of state and observable, which were introduced by abstracting the properties of the Kolmogorovian probability measure and the classical random variable, as well as the notion of independence. Although within these nonstandard probability theories, many important theorems, including the strong law of large numbers (SLLN) for sequences of independent and identically distributed observables, have been considered, some practical applications require their further development. This paper is devoted to the development of the IVM-probability theory for the data described by interval-valued fuzzy random sets (IVM-events). The generalizations of Marcinkiewicz–Zygmund SLLN and Brunk–Prokhorov SLLN for independent IVM-events have been proved within this new theory. Our results open new possibilities in the theoretical analysis of imprecise random events in more complex spaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.