Abstract

In this paper, we establish strong laws for weighted sums of identically distributed $$\psi $$ -mixing random variables without any conditions on mixing rate. The classical Kolmogorov strong law of large numbers is extended to weighted sums of $$\psi $$ -mixing random variables. Two types of weights are considered for the weighted sums. These results are applied to the least-squares estimators in the simple linear errors-in-variables regression model when the errors are $$\psi $$ -mixing random vectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.