Abstract

We employ angle-resolved photoemission to characterize the electronic band structure of the Pb "nanowire" array self-assembled on a stepped Si(111) surface. Despite the highly oriented nanowires observed in scanning tunneling microscopy images, we find essentially two-dimensional Fermi contours modulated one dimensionally perpendicular to the wires. This strong two-dimensional and quasi-one-dimensional nature of the band structure explains the stability and anisotropy of the metallic phase down to 4 K as reported recently. A simple tight-binding model with each Si nanoterrace covered by a densely packed Pb overlayer successfully reproduces this modulated band structure and quantifies the electron coupling within the "nanostripes" and the step-edge potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call