Abstract

After several decades of studies of high-temperature superconductivity, there is no compelling theory for the mechanism yet; however, the spin fluctuations have been widely believed to play a crucial role in forming the superconducting Cooper pairs. The recent discovery of high-temperature superconductivity near 80 K in the bilayer nickelate La3Ni2O7 under pressure provides a new platform to elucidate the origins of high-temperature superconductivity. We perform elastic and inelastic neutron scattering studies on a polycrystalline sample of La3Ni2O7−δ at ambient pressure. No magnetic order can be identified down to 10 K. The absence of long-range magnetic order in neutron diffraction measurements may be ascribed to the smallness of the magnetic moment. However, we observe a weak flat spin-fluctuation signal in the inelastic scattering spectra at ∼ 45 meV. The observed spin excitations could be interpreted as a result of strong interlayer and weak intralayer magnetic couplings for stripe-type antiferromagnetic orders. Our results provide crucial information on the spin dynamics and are thus important for understanding the superconductivity in La3Ni2O7.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.