Abstract

The colossal magnetoresistance effect endows La0.7A0.3MnO3 manganites distinctive fascination. Both theoretical and experimental studies demonstrated that the interplay among polarons could significantly influence magnetoresistance. However, the underlying microscopic mechanism of the influence remains elusive due to the lack of experimental evidences. Utilizing ultrafast optical spectroscopy to track the polaron dynamics around Curie temperatures, we observed a diverse two-step recovery process in three sibling manganite thin films with various magnetoresistance effects and Curie temperatures, while the slow step was proposed to be the formation evolution of correlated polarons through the polaron-polaron interaction. Polarons in La0.7Ca0.3MnO3 equilibrate much faster than those in La0.7(Ca0.58Sr0.42)0.3MnO3 and La0.7Sr0.3MnO3, indicating a comparatively tighter interaction between polarons and subsequently a stronger magnetoresistance effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call