Abstract

Minimal inconsistent subsets of knowledge bases play an important role in propositional logic, most notably for diagnosis, axiom pinpointing, and inconsistency measurement. It turns out that for nonmonotonic reasoning a stronger notion is needed. In this paper we develop such a notion, called strong inconsistency. We show that—in an arbitrary logic, monotonic or not—minimal strongly inconsistent subsets play a similar role as minimal inconsistent subsets in propositional logic. In particular, we show that the well-known duality between hitting sets of minimal inconsistent subsets and maximal consistent subsets generalizes to arbitrary logics if the strong notion of inconsistency is used. We investigate the complexity of various related reasoning problems and present a generic algorithm for computing minimal strongly inconsistent subsets of a knowledge base. We also demonstrate the potential of our new notion for applications, focusing on axiom pinpointing and inconsistency measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.