Abstract

Increasing attention has been focused on the removal of micropollutants from contaminated drinking source water. However, low rejection efficiency and membrane fouling still inhibit further application of nanofiltration membrane in this field. Interesting results were found that the residual hydrolyzed-aluminum nanoparticles from supernatant after coagulation and sedimentation strongly improved the nanofiltration performance for micropollutant removal. A simulated raw water containing humic acids, micropollutants and kaolinite clay was employed to investigate the factors of water matrix affecting the nanoparticle-enhanced nanofiltration for micropollutant removal. Results of experiments showed that these hydrolyzed-aluminum nanoparticles easily induced the aggregation of bisphenol-A (BPA) and humic acids in the supernatant. The enhancement of BPA removal was mainly attributed to the repelling interaction between the Al-BPA-DOC complexity and in situ-modified membrane surface during nanofiltration.‘This in situ surface modification by the hydrolyzed-aluminum nanoparticles improved membrane hydrophilicity, roughness and positively-charging capacity. For the treatment of River Songhua water spiked with micropollutant, the percentage removal of BPA was improved to be 88.5%, much more than the case of single nanofiltration without coagulation (60.7%). Meanwhile, the membrane fouling was reduced by 2.13 times than the case of single nanofiltration without the dynamically deposited-layer of nanoparticles. This in situ modification of nanofiltration membrane by hydrolyzed-aluminum nanoparticles achieved excellent removal efficiency for micropollutants from River Songhua water background.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.