Abstract
Using a simple solution to the heat conduction equation, I show how, at the end of an orogenic event, the relaxation of isotherms from a syn-orogenic advection-dominated geometry to a post-orogenic conduction-dominated geometry leads to the creation of a thick iso-age crustal layer. Subsequent erosion of this layer yields peculiar age-elevation profiles and detrital age distributions that cannot be easily interpreted using traditional techniques. I illustrate these points by using a simple analytical solution of the heat equation as well as a transient, three-dimensional numerical model. I also demonstrate that the age of the end of an orogenic event is so strongly imprinted in the thermochronological record that it erases most of the information pertaining to the orogenic phase itself and the subsequent isostatically-driven exhumation. The concept is used to explain two thermochronological datasets from the Himalayas and demonstrate that their most likely interpretation involves the sudden interruption of extremely fast exhumation accommodated by movement along the South Tibetan Detachment in the Higher Himalayas around 15Ma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.