Abstract
The suitability of a very fast method for obtaining synthesizing accelerograms has been demonstrated for a hybrid simulation technique of source wavelet and acceleration envelope waveform for the 2002 Avaj earthquake. This method is based on the amplitude modeled white noise and envelope waveform. The estimation of peak acceleration from a preliminary simulated record is based on using modeling parameters of rupture plane instead of empirical relations for peak acceleration. Based on comparison between observed and simulated strong ground motion data, a fair agreement is observed between simulated and observed records up to distances 40 km for peak acceleration and duration. The most important feature of the recorded strong motion is decay up to a distance of 40 km which is due to direct upgoing shear waves. At distance of 50 to 60 km peak acceleration increase, which is due to postcritical reflection from velocity gradient in the lower crust. A flat trend is observed for peak acceleration at distance of 60 to 100 km. The simulation indicates that the rupture is started at depth of 8 km and propagated from northwest to southeast. The causative fault for the 2002 Avaj earthquake shows similar mechanism to the 1962 Buin-Zahra earthquake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.