Abstract

On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

Highlights

  • The Himalayan mountain range formed by the collision of the Indian and Eurasian plates is regarded as an earthquake prone zone

  • The epicenter was near the Gorkha region, 80 km northwest of the Kathmandu Valley, and the rupture propagated eastward from the epicentral region passing through the Kathmandu Valley (e.g., Avouac et al 2015; Fan and Shearer 2015; Galetzka et al 2015; Grandin et al 2015; Hayes et al 2015; Kobayashi et al 2015; Yagi and Okuwaki 2015)

  • Concluding remarks Since the capital city of Kathmandu in Nepal is located on a sediment-filled valley and was located at a very close distance to the fault plane of the 2015 Gorkha earthquake, a wealth of new information on strong ground motions was captured there

Read more

Summary

Introduction

The Himalayan mountain range formed by the collision of the Indian and Eurasian plates is regarded as an earthquake prone zone. We succeeded in observing strong ground motions at our array sites in the Kathmandu Valley during this devastating earthquake.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call